Ion Beam Facility: unveiling the power of Ion Beam Analysis and Ion Irradiation for industry advancements

Dr. Beata Tyburska-Pueschel Dutch Institute For Fundamental Energy Research Precision Fair

Physics

Material Analysis

Irradiation

Collaboration

DIFFER Ion Beam Facility

- 3.5 MV Singletron max. energy 4 MeV for ⁴He²⁺
- Gas ions H, 3He, 4He, plan to add D
- High-current up to 50 μ C/cm 2
- Four beamlines
- User-facility
- 30% time for industry
- Measurements & analysis

DIFFER Ion Beam Facility

- 3.5 MV Singletron max. energy 4 MeV for ⁴He²⁺
- Gas ions H, 3He, 4He, plan to add D
- High-current up to 50 μ C/cm 2
- Four beamlines
- User-facility
- 30% time for industry
- Measurements & analysis

DIFFER Ion Beam Facility

- 3.5 MV Singletron max. energy 4 MeV for ⁴He²⁺
- Gas ions H, 3He, 4He, plan to add D
- High-current up to 50 μ C/cm 2
- Four beamlines
- User-facility
- 30% time for industry
- Measurements & analysis

Physics

Material Analysis

Irradiation

Collaboration

Material Analysis

Irradiation

Collaboration

Physics

IBA: Rutherford Backscattering

IBA techniques

 $channel \rightarrow energy \rightarrow depth$

IBA techniques

RBS heavy element in light matrix
NRA: light element in heavy matrix, trace impurities
ERD: hydrogen quantification
PIXE: multi -elemental, high signal -to-background
ratio, detection limits close to 1 ppm
PIGE: every single isotope of low -Z elements

Ion Beam Analysis

• Depth profiling & elemental composition

Quantitative without standards

IBA

- Non-destructive
- No sample preparation
- Fast and cheap

Parameters

Information depth:up to 15 μmSensitivity:1 – 1000 ppmAccuracy:down to 1%Depth resolution:down to 2 nmMeasurement time:5 to 60 min per point

Applications: material science, geology, art, surface quality, etc.

Physics

Material Analysis

Irradiation

Collaboration

Material Analysis

Case 1: multi layer mirrors

Objective: test the accuracy of the deposition technique

~40 nm thin layers are resolved with accuracy of 0.1 nm (RBS)

layer#	10 ¹⁵ at/cm ²	comp.	nm*
1	268	Ag	46.2
2	369	TiO ₂	39.2
3	281	Ag	48.4
4	371	TiO ₂	39.4
5	281	Ag	48.4
6	379	TiO ₂	40.2
7	285	Ag	49.1
8	399	TiO ₂	42.3

*) Assuming bulk densities

Dr. Beata Tyburska -Pueschel | Precision Fair November 15th, 2023

Courtesy of Wim Arnold Bik, www. detect99.nl

Case 2: tin contamination of EUV mirrors

Objective: test the efficiency of the cleaning technique

44 Z	45	47	48	49	50
Ru F	Rh Pd	Ag	Cd	In	Sn

Material: Ru-capped Si/Mo MLM contaminated by Sn plasma Result: 2 nm of Sn

Courtesy of Wim Arnold Bik, www. detect99.nl

Case 3: fusion tungsten

Objective: determine deuterium depth profiles, Compare results to LIBS

Material: 3 cm ø W discs exposed to deuterium plasma seeded with impurities

Case 4: catalyst -coated membrane

Objective: determine Ir loading, depth profiles & deposition uniformity

Objective: correlate the amount and type of anion vacancies to photochromic properties

Material: Yoxyhydride doped with Ca to create O²⁻ and H⁻ anion vacancies

When Ca \uparrow , O remains constant and amount of H $\downarrow \rightarrow$ H vacancies \uparrow

Case 6: electrolysis (June '24)

Objective: measure dynamic changes to the electrode and correlate it with the electrolysis parameters

Material:FeMoSxElectrode build upfrom 10 nm to 150 nmContinuous measurements for 10 hours

Physics

Material Analysis

Irradiation

Collaboration

Physics

Material Analysis

Collaboration

Irradiation

Ion irradiation

• Defect creation & material modification

Applications

- Proxy for fusion/fission neutrons
- Cosmic rays (FPGAs, diamond detectors)
- Plant mutation
- Semiconductors \rightarrow not at DIFFER

Parameters

Particles: protons or 4He
Energy: up to 3 MeVp, 4 MeV4He
Temperature: up to 1000°C
Current: 100 pA/cm² up to 50 μA/cm²

Case 1: only irradiation

fast particles

Dr. Beata Tyburska -Pueschel | Precision Fair November 15th, 2023

material

Case 2: cosmic rays in FPGA

Objective: Use proton -irradiation as a failure generator to test SEU mitigation techniques

Cosmic rays

- Protons, atomic nuclei
- Energy: 1 GeV+ (3)(3)
- Flux: 6e4 p/(m²s) at 1 GeV p
- SEU/month = 1
- Random spot

Singletron

- Protons
- Energy: 3 MeV
- Flux: 6e11 p/(m²s) (100 pA)
- SEU/s = 4
- Targeted spot

Case 3: simultaneous irradiation

-corrosion (June '24)

Dr. Beata Tyburska -Pueschel | Precision Fair November 15th, 2023 30-60 µm sample corrosive material

Physics

Material Analysis

Irradiation

Collaboration

Physics

Material Analysis

Irradiation

Collaboration

Summary

Share your research problem with me!

- Material composition
- Depth profiling
- Trace impurities
- Interest in isotopes
- Defects simulate fission/fusion/cosmic rays etc. damage
- He bubbles

Contact

Dr. Beata Tyburska -Pueschel IBF project leader +31 40 333 47 62 tyburska@differ.nl

DIFFER Eindhoven, The Netherlands info@differ.nl | www.differ.nl Request beam time

collaboration \leftrightarrow share students \leftrightarrow commissioned research

Dr. Beata Tyburska-Pueschel| Precision Fair November 15th, 2023

Backup

Case 3: plant mutation

Objective: Use ion -irradiation to change the color and texture of ornamental plants

Cyclotron in Japan

- 220 MeV carbon
- R_p = 1,2 mm
- LET = 107 keV/µm
- 1 Gy = $6e6 \text{ at/cm}^2$

Singletron

- 3 MeVhydrogen
- $R_p = 150 \ \mu m$
- LET = $160 \text{ keV}/\mu\text{m}$
- 1 Gy = $4e6 \text{ at/cm}^2 \rightarrow 1 \text{ s/cm}^2$

DICE parameters

- Simultaneous irradiation -(salt) corrosion experiments
- Salt circulation, i.e. dynamic salt
- Thorium salt
- Operation time: up to 100 hours
- 1 year MSR = 5 days DICE
- Temperatures: up to 1000°C
- High beam currents: up to 50 μ A/cm²
- Easy sample/salt loading
- Control temperature
- Reliable and absolute current measurements
- Shielding to protect against gammas and neutrons
- No cell corrosion products in the salt
- Adaptable design for other experiments
- Vacuum 10⁻⁶ mbar

IBA – Nuclear Reaction Analysis

NRA – light elements in heavy matrix

- Low Z elements
- Tracing impurities
- Isotope sensitive
- No high -Z background
- Requires expensive detectors
- Needs measured cross -sections

channel \rightarrow energy \rightarrow depth

IBA – RBS/channeling

RBS/C-crystal perfection

• Degree of damage

• Amorphization

IBA – Elastic Recoil Detection

ERD-light element profiling

- Simpler than NRA
- Simultaneous multi -element depth profiling
- Shallow depth

PIXE and PIGE

PIXE – particle - induced X-ray emission

Multi -elemental, high signal to background ratio, nondestructive, very sensitive - detection limits close to 1 ppm.

PIGE-particle -induced gamma emission

For low-Z elements, gamma -ray energies, are a characteristic "fingerprint" of every single isotope

RBS+NRA+PIXE

ERD+RBS+PIXE

Sensitivity comparison

RBS vs. SIMS

- Quantitative
- Non-destructive
- Larger beam spot
- Faster
- More accurate depth profiling

Technique comparison

	SIMS	XTEM	SAM	GD-OES	XPS	LA-ICP-MS	IBA
Primary beam	keV ions	~100 keV electrons	~100 keV electrons	Plasma	X-rays ^a	Pulsed laser	~3 MeV light ions
Detected signal	Sputtered ions	Primary electrons in phase contrast	Auger ^a electrons	Visible photons ^h	Photo- electrons	Evaporated ions	×30 MeV neavy ions X-rays ^{<i>a</i>} ; nuclear reaction products: scattered primaries, target recoils and γ-rays
Destructive ^b	Yes	Yes	Yes	Yes	Yes	Yes	No
Depth resolution ^c	2 nm	0.1 nm	2 nm	20 nm	2 nm	50 nm	2 nm
Information depth ^d	500 nm	100 nm	500 nm	50 µm	500 nm	~5 µm	15 µm
Lateral resolution ^e	50 nm	0.1 nm	2 nm	1 mm	3 µm	10 µm	500 nm
Elemental imaging	Yes	EELS, EDX ^f	Yes	No	No	No	Yes
Molecular information	Yes	No?k	Yes	No?k	Yes	No?k	No ^l
Ambient analysis	No	No	No	No	No	Yes	Yes
Sample preparation	No	Yes	UHV	No	UHV	No	No
Quantitative	2g	No	Yes	Yes	Yes	Yes	Yes
Standards needed	Yes	—	Yes	Yes	Yes	Yes	No
Elemental sensitivity ^h	10^{-8}	10 ⁻¹	10^{-3}	10^{-6}	10^{-3}	10 ⁻⁹	10 ⁻⁶
Accuracy	i	—	10%	10%	5%	5%	1%

Chris Jeynes & Julien L. Colaux, Analyst, 2016, 141, 5944–5985

Case 5: resonances

Resonances are used for

- thin -film depth profiling with a very high depth -resolution
- finding traces of elements (impurities) ultra -high sensitivity

IBF parameters at **DIFFER**

Techniqu e	Elements	Sensitivity	Depth	Depth resolution
RBS	$Z \ge 5$	10 ppm (large Z) - few at.%	2 - 120 µm	> 5 nm
NRA	Z: 1 - 15	Isotope dependent 10 ⁻³ at.%	< 10 µm	> 50 nm
ERD	H, D	H: 0.1 at.%, D: 100 ppm	<2,5 µm	~20 nm
PIXE	$Z \ge 13$	1 – 10 ppm for F, Li, B, N	few tens of µm	poor
PIGE	Z: 1 - 15	10 ppm (large Z) – 1 at.%	few tens of µm	Isotope dependent
Irradiation	$Z \ge 3$		<150 µm	

Final parameters depend on the combination of energy, ions, target, setup, and experimentalist ability to optimize them.