Opportunities within the domain of energy research

Co-evolution, Technology Transfer, start-ups, and Spin-Outs

Marco de Baar

What is our (inter)national role?

DIFFER Solar Fuels Renewable energy \rightarrow chemicals and fuels

Clean conversion: CO₂-neutral fuels and chemistry

- Seasonal and regional energy storage
- Energy dense fuels for long haul transport and mobility
- Sustainable feedstock for green industry

Technological challenge

Renewable fuels and chemicals cheaper than fossil equivalents. Example: electrolysis benchmark of > 6 \in /kg H₂

- ightarrow Research on novel materials, processes and systems
 - to reach < 1 \in /kg H₂ in 10-15 years

NWO-Shell CSER Computational design of hybrid photocatalysts for solar fuel generation

The virtual design of two dimensional material based photocatalysts that can selectively and efficiently catalyze H₂O, CO₂, and N₂ reduction

Partners:

DIFFER

Products:

Software for virtual 2D material design, Database of 2D materials, Publications

NWO-LIFT: Air2Hydrogen "Water neutral" photoelectrochemical hydrogen production

Scope:

"Water neutral" photoelectrochemical (PEC) hydrogen production

- Alternative device and photoelectrode architecture
- Material functionalization for capturing water from ambient air

Partners:

DIFFER, Toyota (via NWO ENW PPS fund) Toyota Mirai fuel cell car - 2014

- Green hydrogen
- Gas phase PEC operation

ECCM-NWA: SCALE project Next-generation water electrolysers: from lab to industry

Prepare basic science for next-generation of anion exchange membrane (AEM) water electrolysers, by bringing emerging materials from "lab to the industry".

12 June, 2023

Granted: Kick-off:	09/2020 Q2 2021		
DIFFER:	Project coordinator		
https://www.differ.nl/news/SCALE			

H2020: Sun-to-X project Solar energy for carbon-free liquid fuel

Use solar energy to produce the carbonfree, non-toxic, energy-dense, liquid fuel "Hydrosil" with very good long-term stability and applicable in the transport and energy sectors.

15

https://sun-to-x.eu

Partners:

Endorsement Endor	orrangers Williams OTA CNGIC EPFL
--	---

Industrial collaboration Green N₂ fixation: direct oxidation of Nitrogen to Nitric Oxide

Next Generation "Birkeland-Eyde" Process:

- Replace fossil-fuel based ammonia production -(NH3) with nitrogen oxides (NO)
- NO can be produced directly from air and electricity using high temperature plasma

Partners:

Michail Tsampas

12 June, 2023

DIFFER

RVO / ISPT project Green N₂ fixation: direct oxidation of Nitrogen to Nitric Oxide

Plasma aided electrochemical nitrogen fixation to nitric oxide or ammonia (basic precursors for fertilizers).

- Demonstrated plasma activation with water electrolysis for green fertilizers.
- Base for H2020-ORACLE: <u>all electric</u> and <u>no CO₂ emissions</u>

Partners:

9/42

EU - KEROGREEN concept

1. CO₂ split by plasma reactor into products CO₂, CO, O₂

- 2. O₂ separated out electrochemically
- 3. CO content purified
- 4. CO and water form syngas by Water Gas Shift reaction
- 5. Fischer-Tropsch reactor synthesize hydrocarbons
- 6. Hydrocracking optimize kerosene content
- 7. CO₂ re-emitted into the atmosphere by combustion
- 8. Direct Air Capture of CO₂ emitted
- 9. CO_2 neutral circle is closed

DIFFER's role in the Nuclear Fusion ecosystem

Nuclear fusion reaction(s)

- $D + T \rightarrow {}^{4}\text{He} + n + 15 \; \text{MeV}$
- Highest reaction rate
- ⁴He: 3,5 MeV
- n: 14.1 MeV
- n T $\tau_{\rm E}$ > 5 x 10²⁸ m⁻³ K s at T between 150 – 200 MK

/42

Our work-horse: The Tokamak

/42

ITER

Physics: Alpha-heating Confinement MHD Exhaust: Plasma-atomic-molecular-metal

Technology:

Super conducting magnets Reactor maintenance Heating systems Diagnostics Systeem-, and control Tritium breeding System Engineering

Alternative approaches to Fusion (hand-picked)

Microsoft signs power purchase deal wit nuclear fusion company Helion

By Timothy Gardner 🗸

In total over 33 Fusion start-ups. Top 5 in terms of cash:

1. CFS	US	2.0G\$	
2. TAE	US	1.2G\$	
3. HELION	US	0.5G\$	
4. GF	Ca / UK	0.3G\$	
5. Tokamak Energy	UK	0.1G\$	
• STEP	UK	?	Public-private

We are open to work with all new developments that we consider realistic and teams that we consider competent

 CFS TAE HELION 	US US	2.0G\$ 1.2G\$	Materials, Control, Instrumentation
 GF Tokomak Energy 	Ca / UK	0.3G\$	Instrumentation
• токаттак епегду	UK	0.16\$	Materials
• STEP	UK	?	Control
• BEST	Ch	?	Diagnostics, Systems Engineering, Control

Fusion Energy research projects Spin-outs and Technology Transfer with academia and industry

Focus on materials, instrumentation and control, and models for operation of nuclear fusion reactors

- Validation of ITER Material Mix and Development of complex material solutions for DEMO
- Models and instruments for control of thermal, particle, momentum and radiative distributions
 HEATING SYSTEMS at high Toroidal Fiel
- Tractable models for turbulence, plasma transport and plasma scenarios optimization
- Operation of fusion facilities, including world leading experimental facility Magnum-PSI

Single Dutch beneficiary in the EUROFUSION program

- Representing Affiliated Entities: TU/e, UT, and FuseNet

- Initiating research programs for development of technology development and valorization for ITER
- → CO-EVOLUTION with companies and industries to establish instruments, but direct valorization difficult due to nuclear fusion time scales.

So far: SPIN-OUTS and TECHNOLOGY TRANSFER and to lesser extend GEO-RETURN

- Solar Fuels department is co-evolving TODAY new processes and innovations for the electrification of industry with a wide variety of industrial partners
- Fusion Energy department involved in technology transfer and spin-outs.
- Present Georeturn from large European facilities helps Dutch companies to innovate

Present DIFFER research infrastructure is used by academia and industrial partners

- \rightarrow Future facilities to be **co-evolved** with industrial partners
- \rightarrow Operated as user facilities for (inter)national academic and industrial teams

; -) Not all nuclear start-ups do fusion With NRG, RID and French Nuclear Industry we support Thorizon

EUROfusion, 50 international partners, TU/e, TUD, ASML... New developments: re-entry research, flower industry, FONTYS

Plasma Facilities	Ion Beam F	Ion Beam Facility		RID, NRG, nuclear industry	
				UM, TU/e, TUD, UL, Fontys, industrial partners	
			LiMeS	EUROfusion, TU/e, Industrial partners	
PLD	Open Ion Beam	X-Ray Facility			
UT. RUG. TU/e	Electro-catalysis, Electrolyser	TU/e, TUDelft, UA, RUG,		LSI Materials	
TSST, ASML, TUD, Leiden	Leiden companies, Cancer therapy, UGent, VDL, KMSKA, Erasmus	LSI Technology			
AMOLF, ARCNL	Life sciences	MC, Agfa Healthcare, ASML	Groeifonds Hydrogen		
		AMOLF, SRON, ARCNL		Groeifonds Nucleair en Thorizon	

DIFFER has prominent position in the innovation ecosystem

Valorization lies at the heart of our science: Co-evolution, Technology Transfer and Spin-outs

Marco de Baar

