

Precision engineering

Introduction by Rob van der Meer, Paul Hieltjes, Ramon Navarro

Netherlands Institute for Space Research

Netherlands Organisation for Scientific Research (NWO)

Content

Precision engineering for the Einstein telescope

• Rob van de Meer ILO Einstein telescope

Precision Engineering with SRON Leiden

• Paul Hieltjes

Precision Engineering with Nova

Ramon Navorro

Precision engineering for the Einstein Telescope

Brief general information on ET Nik hef

ETpathfinder facility Maastricht

- <u>https://www.etpathfinder.eu/research/</u>
- Design document
- Clean room 20 x 30 m (ISO 14644-1 class 8)
- UHV Vacuum facility
- Cooling to 120 K and 15 K

Nik hef

ETpathfinder challenges

- Testing new mirror material: Silicon crystalline semi-conductor
- Testing mirrors at low temperature 120 K and 15 K
- Testing new lasers at 1550 2100 nm
- Testing vibration reduction
- Component cleaning
- Sensors, actuators

Einstein Telescope

ET2SMEs project

- Precision Mechanics and Mechatronics
- Vibration isolation systems for stringent conditions (ultra-high vacuum, cryogenic)
- Need for displacement sensors, actuators, blades, suspension wires, inertial sensors
- Very clean components (impurities allowed) and very strict cleaning procedures
- Limited amount of materials (e.g. margin) available
- Catalogue of required technologies:
 <u>https://et2smes.eu/et-technologies-catalogue/</u>

Collaboration opportunities

- 1. Next 2 5 years
 - R&D and bringing parts to higher TRL level
 - Silicon mirrors as thick as passible 15 60 CM diameter and thickness.
 - Materials, coatings, support system, vacuum connection
- 2. 5-10+ years prepare for prototype phase and larger orders.
 - Possibilities for quality checking, coating, handling
 - Show you can do better than us.

More information in parallel workshop

www.etpathfinder.eu

SRON's New Building in Leiden en Groningen

SRON heritage on precision engineering

- High accuracy (infra-red)Optical lenses (e.g. Veldlaser)
- Optical gratings for Sentinal 5 (e.g. Phillips, VDL)
- Optical module for SPEX-one (TNO, Airbus)
- Xray Camera chips mounting, and gluing (Neways)
- Many other examples of Space instrumentation

Immersed grating on inspection disk

Immersed

Grating in

housing

mechanical

Grating in storage container

New building => new eco-system

- The move to Leiden is one element of the SRON strategy to become a bigger part of the space related environment around "South Holland"
 - Space Campus Noordwijk
 - Leidse Instrument makers school (LIS)
 - Leiden Institute of Advanced Computer Science (LIACS)

• We are also open to look for Public Privat Partnership to share our heritage and give a boost to companies in participating in Big Science (tenders)

Some facilities

optical

mechanical

SRON

electronics

Integration in cleanroom

Netherlands Research School for Astronomy

AST(RON

Observatories

William Herschel Telescope

James Webb Space Telescope

ESO Very Large Telescope

ESO Extremely Large Telescope

III

Optical Infrared Instrumentation

Cleanroom Integration and Assembly

Manufacturing and Testing Optics: single nm accuracy

Mechanical Manufacturing: single um accuracy

150mm Interferometer

Spectral 200nm-30µm

20 Kelvin or lower

cryogenic opto-mechanical tests