

WELKOM bij de ESRF

De ESRF, een 3^e generatie synchrotron

Wat is het en wat kun je er mee?

Bauke Dijkstra (directeur onderzoek ESRF)

Wim Bras (projectleider DUBBLE)

- A synchrotron is a facility where electrons are accelerated around a fixed circular path by an electric field and held to the path by an increasing magnetic field
- To keep the electrons in the circular path energy is required
- The electrons emit this energy again in the form of X-ray radiation
- > The ESRF is thus a huge X-ray generator

The ESRF – Light for science

A versatile tool: from X-rays to applications

ESRF Staff on 31–12–2012 Distribution by nationality (~600 Staff)

User Facility

11,000 PIs between 2009 and 20121900 publications per yearFacility cost of 50 k€/publication

Scientific Excellence 30 Nature and Science papers in 2011 4 Nobel Prize winners among users

Societal Impact

~25% of capacity for industry R&D
Materials, energy, health → main topics
Training students at a world class facility

The role model for a User Facility

2000 proposals per year evaluated by 10 external panels.

Beamtime allocation within 6-9 months.

24h/24h availability of ESRF scientists as local contacts.

Travel cost to Grenoble paid by the ESRF.

200-room hostel and restaurant on site.

Main challenges ahead:

Maintain global leadership of the ESRF (and Europe) Drive the European strategy in photon science Implement a scientific vision for 2020 and beyond

ESRF Upgrade Programme Phase I (2009–2015): well advanced Phase II (2015–2019): proposal in preparation

- Accelerator and source
- Beamlines
- Enabling technologies

Beamlines at the ESRF

ESRF Upgrade Programme Phase I (2009–2015): well advanced Phase II (2015–2019): proposal in preparation

Replace the existing electron storage ring with a new one:

150 Mio € new investment will make the ESRF worth a 1000 Mio € facility on a new site, in much less time.

1994 – 2020: three steps towards more brilliance

 All scientific focus areas of the ESRF will benefit from the Phase II Upgrade

- The much improved brilliance of a Phase-2 upgraded source will enable to study materials (e.g. catalysts) in complex or embedded environments (under *in operando* conditions)
- Much smaller, but highly brilliant X-ray beams provide a much improved spatial resolution
- The higher flux will facilitate time-resolved studies
- The much increased coherent photon flux density will be of great benefit for imaging studies of e.g. tumours

Major new projects in photon science

European Synchrotron Radiation Facility

Thank you for your attention!

