European Extremely Large Telescope
Astronomical instrumentation

21 September 2011

Wilfried Boland
NOVA introduction

- Netherlands Research School for Astronomy
 - Top research school, evaluated exemplary in 2010
 - Federation of university astronomy institutes
 - 290 fte scientific staff (20% is directly funded by NOVA)

- Mission
 - Facilitating top astronomical research in the Netherlands
 - Hire researchers
 - Build instruments
 - Train young astronomers at highest international level
ESO Very Large Telescope
Atacama Large Millimeter Array
ALMA
NOVA ESO projecten

MIDI

NEVEC

OmegaCAM voor VST → OmegaCEN

SINFONI: 2k camera voor SPIFFI: nabij-IR integral field spectrometer

Optical bench voor SPHERE Zimpol

MUSE-ASSIST: test set-up voor nieuwe VLT deformeerbare secundaire spiegel

X-Shooter nabij-IR spectroscopische arm
Nieuwe grote ESO project: ~40m optisch/IR telescoop
Fase B afgerond: klaar voor de bouw! (na goedkeuring Council)
NOVA instrumentation program

- Many discoveries are driven by new instrument capabilities
 - Involvement in instrument ⇒ decision about functionality
 - Involvement in instrument ⇒ understanding the instrument performance
 - Involvement in instrument ⇒ early access to data
 - Involvement in instrument ⇒ ideal position to make discoveries!

- **NOVA strategy:**
 - Design & construct instruments for international facilities
 - Focus on ESO
 - NOVA Optical-Infrared instrumentation group located at ASTRON in Dwingeloo
Instrument Project Characteristics

- Collaborations with international partners (for ESO projects ~4-6 partners)
- NOVA astronomer NL-leader and connection to the international consortium
- Common Project management procedures under ESO protocol (PDR, FDR, progress meetings etc.)
- Hardware design and manufacturing by NOVA Optical-IR instrumentation group
- Dutch astronomers in (inter)national science team to ensure interesting capabilities
Objective:
- Participate in design & construction of instrumentation for E-ELT
 - In one as a leading partner (40% share)
 - In another one as minor partner (20% share)

Funding:
- General NOVA budget
- ESFRI grant of 18.78 M€
 - 8.78M€ for design and development
 - 10M€ to build one instrument (requires PI role)
- Other grants
E-ELT: 8 SCIENCE INSTRUMENTS +2 Post Focal AO MODULE STUDIES

<table>
<thead>
<tr>
<th>INSTRUMENT</th>
<th>MAIN OBSERVING MODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIMOS</td>
<td>Multi-slit and fiber MOS options are being studied</td>
</tr>
<tr>
<td>CODEX</td>
<td>High Resolution, High Stability Visual Spectrograph</td>
</tr>
<tr>
<td>METIS</td>
<td>Mid IR camera /spectrograph</td>
</tr>
<tr>
<td>EAGLE</td>
<td>WF, Multi IFU NIR Spectrograph. +AO</td>
</tr>
<tr>
<td>HARMONI</td>
<td>Single IFU, Wide Spectral Band Spectrograph</td>
</tr>
<tr>
<td>SIMPLE</td>
<td>High-Resolution IR spectrograph</td>
</tr>
<tr>
<td>MICADO</td>
<td>NIR Camera sampling to the DF</td>
</tr>
<tr>
<td>EPICS + XAO</td>
<td>Planet Imager and Spectrograph</td>
</tr>
<tr>
<td>MAORY</td>
<td>(MCAO) with 2 additional DM</td>
</tr>
<tr>
<td>LTAO</td>
<td>Module Provides DL images over a field <30”</td>
</tr>
</tbody>
</table>
E-ELT Instrumentation in NL

- **Consortium:**
 - Universities: NOVA, TU Delft, UTwente
 - Technological institutes: ASTRON, SRON & TNO
 - Companies: Airborne Composite BV, Dutch Space, JPE

- **Applied for in 2008, awarded in 2009, end 2020+**

- **Phase I (8.78M€):**
 - Preliminary design (4 instruments)
 - Technology developments

- **Phase II (10M€):**
 - Construction of one instrument
Industrial participation

- Large research facilities means big business
- Industry can become project supplier to ESO and/or NOVA
 - Construction of the telescope
 - Delivery of subsystems to the telescope
 - Supplier of parts of instrumentation, or partner in (optical, mechanical or thermal) design; partner is R&D to demonstrate technical readiness
Industrial participation

- Large research facilities means big business
- Industry can become project supplier to ESO and/or NOVA
 - Construction of the telescope
 - Delivery of subsystems to the telescope
 - Supplier of parts of instrumentation, or partner in (optical, mechanical or thermal) design; partner is R&D to demonstrate technical readiness
Technology developments I

- Vibration-free and precise cryo-coolers
 - Present partners: UTwente, Dutch Space
 - Motivation: High precision instruments, no vibrations
 - Potential solution: sorption coolers
 - Remaining problems:
 - Cooling power too low (10mW \Rightarrow 1W)
 - University product \Rightarrow commercial product
Technology developments II

- **Movable cryogenic systems**
 - **Present partners:** NOVA Op-IR, JPE, SRON, TNO
 - **Motivation:** High precision positioning and stability of movable elements in a cryogenic environment (80K)
 - **Problems:**
 - Opto-mechanical engineering
 - Very accurate positioning (nm), metrology and control
Technology developments III

- New optical components and materials
 - Present partners: Airborne, NOVA Op-IR, SRON, TNO
 - Motivation: Standard techniques will make the instrument rather big and heavy, or do not provide the required stability
 - Potential solutions: composite materials, immersed gratings, integrated optics, smart optics, free form mirrors
 - Remaining problems:
 - Behavior of composite materials in a cryo-vacuum environment (stiffness, air tightness, out-gassing)
 - Immersed gratings have not yet been made with the required accuracy
 - Manufacture products with the required accuracy (required micro-roughness RMS for free-form 30cm large Al mirrors = 15nm)
Other areas where NOVA will look for partners:

- Polarimetric elements and engineering
- Precision engineering
 - Better performance prediction,
 - improved overall system engineering control,
 - modeling alignment tolerances,
- Advanced data flow system
- AO Control (hardware and software)
- Industrial production process

There are many opportunities for industrial participation and products!
One example: METIS

Mid-infrared E-ELT Imager and Spectrograph

- Operating from 3 to 14 micron
 - Imager (L, M, N-band)
 - Low resolution long slit spectrometer (L, M, N-band)
 - High resolution IFU spectrometer (L, M band)
 - Coronography (L, M, N band)
 - Polarimetry (N-band)

- NOVA has PI role
 - Overall project management
 - High resolution IFU spectrograph
 - Fore optics
 - Cold central structure
Conclusion and Contact

There are many opportunities for industrial participation and products!

- Wilfried Boland (boland@strw.leidenuniv.nl)
- Frank Molster (molster@strw.leidenuniv.nl)